
Dauer-Specific Dendrite
Current Biology 23, 1527–1535, August 19, 2013 ª2013 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2013.06.058
Article

Arborization in C. elegans
Is Regulated by KPC-1/Furin
Nathan E. Schroeder,1 Rebecca J. Androwski,1

Alina Rashid,1 Harksun Lee,2 Junho Lee,2

and Maureen M. Barr1,*
1Department of Genetics and The Human Genetics Institute of
New Jersey, Rutgers University, 145 Bevier Road, Piscataway,
NJ 08854 USA
2Research Center for Functional Cellulomics, Institute of
Molecular Biology and Genetics, Seoul National University
School of Biological Sciences, Seoul 151-747, Republic of
Korea

Summary

Background: Dendrites often display remarkably complex
and diverse morphologies that are influenced by develop-
mental and environmental cues. Neuroplasticity in response
to adverse environmental conditions entails both hypertrophy
and resorption of dendrites. How dendrites rapidly alter
morphology in response to unfavorable environmental condi-
tions is unclear. The nematode Caenorhabditis elegans enters
into a stress-resistant dauer larval stage in response to an
adverse environment.
Results: Here we show that the IL2 bipolar sensory neurons
undergo dendrite arborization and axon remodeling during
dauer development. When dauer larvae are returned to favor-
able environmental conditions, animals resume reproductive
development and IL2 dendritic branches retract, leaving
behind remnant branches in postdauer L4 and adult animals.
The C. elegans furin homolog KPC-1 is required for dauer IL2
dendritic arborization and dauer-specific nictation behavior.
KPC-1 is also necessary for dendritic arborization of PVD
and FLP sensory neurons. Inmammals, furin is essential, ubiq-
uitously expressed, and associated with numerous pathol-
ogies, including neurodegenerative diseases. While broadly
expressed in C. elegans neurons and epithelia, KPC-1 acts
cell autonomously in IL2 neurons to regulate dauer-specific
dendritic arborization and nictation.
Conclusions: Neuroplasticity of the C. elegans IL2 sensory
neurons provides a paradigm to study stress-induced and
reversible dendritic branching, and the role of environmental
and developmental cues in this process. The newly discovered
role of KPC-1 in dendrite morphogenesis provides insight into
the function of proprotein convertases in nervous system
development.

Introduction

Animals display numerous adaptations in response to stress-
ful environmental conditions. Under ideal environmental con-
ditions, the nematode C. elegans develops from an embryo
through four larval stages before molting into the reproductive
adult [1]. Under stressful conditions of high population density,
starvation, and high temperature, C. elegans develops into an
alternative larval stage called dauer (Figure S1 available online)
*Correspondence: barr@dls.rutgers.edu
[2]. Dauers are morphologically and behaviorally distinct from
the nondauer third-larval L3 stage and adapted to survive
stressful environmental conditions [3]. One adaptation is nicta-
tion behavior, mediated by the IL2 neurons, wherein the dauer
larvae stand on their tail [3, 4]. Upon return to a favorable envi-
ronment, dauers reenter reproductive development (Figure S1)
[2, 5].
Differences in neuron morphology and gene expression

are known to exist between dauers and nondauers [6–8]. How-
ever, the nervous system of dauers is relatively unexplored
compared to the adult hermaphrodite. Electron microscopy
studies found differences betweenC. elegans dauers and non-
dauers in the ciliated endings of neurons and surrounding glia
[8, 9].
Most neurons in C. elegans are morphologically simple [10].

Electron microscopy and reconstruction of the C. elegans ner-
vous system suggested that there were few, if any, branching
dendrites [10]. However, recent studies using GFP revealed
that the PVD and FLP polymodal sensory neurons undergo
progressive dendritic arborization with increasing complexity
as the animal develops from L2 to adult (reviewed in [11]).
Here we show that the IL2 neurons undergo dramatic

remodeling during dauer development, including dendrite
arborization. After an exit from dauer, IL2 processes retract
and return to the nondauer morphology. Using a candidate-
gene approach, we identified the POU homeodomain tran-
scription factor UNC-86 and RFX transcription factor DAF-19
as regulators of dauer IL2 remodeling. From a forward genetic
screen, we identified KPC-1, the C. elegans homolog of furin,
as a cell-autonomous regulator of dauer-specific IL2 arboriza-
tion and function.

Results

Dauer IL2 Neurons Display Dendrite Arborization and

Multipolarity

In nondauer larvae and adults, the six IL2 neurons (left-right
pairs located in the subdorsal, subventral, and lateral hexar-
adiate zones) have single unbranched primary (1�) dendrites,
ending in sensory cilia that are exposed to the external envi-
ronment (Figure 1A) [10, 12]. Although the six IL2 neurons
have a similar gross structure during nondauer stages and
express many of the same genes, the lateral IL2s display
different neuronal connectivity and morphology [10, 12, 13].
Based on these observations and the anatomical differences
described herein, we refer to the dorsal and ventral IL2 neu-
rons as IL2Qs (inner labial type 2 quadrants), while the left
and right IL2s are referred to as IL2Ls (inner labial type 2 lat-
erals). This nomenclature is currently used for a set of six sen-
sory outer labial neurons [10].
Using multiple fluorescent reporters expressed in the IL2s,

we found that during dauer the IL2Qs undergo dendrite arbor-
ization resulting in a 3-fold increase in total dendritic length
(Figures 1 and S2A). Remodeling of IL2 axons was also
observed, including branching and axonal thickening
(Figure S2B).
The IL2Q dendritic arbors in dauers are distinct and more

variable in structure from the well-characterized and highly
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Figure 1. The IL2 Neurons Show Extensive Re-

modeling during Dauer

(A) Lateral z projection of a wild-type L3

expressing Pklp-6::GFP in IL2s. The six IL2s

are arranged in a hexaradiate pattern

with single 1� dendrites (arrowhead) anterior

of the cell body. Axons (arrow) posterior

from the cell body form a loop that inner-

vates the nerve ring. The scale bar represents

10 mm.

(B) Dorsal z projection of wild-type dauer

expressing Pklp-6::GFP in IL2s. The IL2Q (for

quadrant) dendrites in dauer are highly branched.

Zoomed inset: the IL2QDR 1� dendrite extends a

2� dendrite toward the dorsal midline which

branches, forming a 3� dendrite that travels along

the dorsal midline. This 3� dendrite branches and

extends 4� dendrites into the body-wall muscle

quadrants. Similar branching patterns are seen

on the ventral body wall. The scale bar represents

10 mm.

(C) z projection of IL2QDL dauer cell body

expressing Pklp-6::GFP. The IL2Qs extend

additional dauer-specific primary dendrites

(1d�) (red arrowheads) in addition to the original

nondauer anteriorly directed 1� dendrite

(white arrowhead), and posteriorly directed

axon (white arrow). The scale bar represents

5 mm.

(D) Dorsal view of dauer nose expressing

Plag-2::GFP showing (left) the single branch

(arrow) extending from the lateral IL2LL

1� dendrite and (right) a body-wall view

of the same animal showing the formation of

the crown from branches emerging from

the IL2L dendrites. The scale bar represents

5 mm.

(E) Wild-type dauers extend fine dendritic

processes along the body wall. Top: dorsal/

ventral view of body wall in a wild-

type dauer expressing Plag-2::GFP in IL2

neurons. Quaternary dendrites (arrowhead)

extend from the dorsal/ventral midlines per-

pendicularly into the muscle quadrants. Middle: same animal and focal plane with DIC Nomarski optics. Somatic muscle dense bodies (box), which

serve as connections with the overlying hypodermis, are evident. Bottom: merged image. Scale bars represent 10 mm.

(F) Oblique transverse schematic of dauer IL2 branching. M, muscle; P, pharynx; H, hypodermis.

See also Figure S2.
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stereotyped PVD dendritic arbors in adults [14]. During dauer,
the IL2Q 1� dendrites extend secondary (2�) dendrites directly
to the dorsal (for IL2QDs) and ventral (for IL2QVs)midlines (Fig-
ures 1B and 1F). This differs from PVD neurons where the 2�

dendrites travel along the body wall dorsally and ventrally to
the sublateral nerves (see Figure 2A in [14]). Upon reaching
the dorsal or ventral midline, the IL2Q 2� dendrites branch
and extend 3� dendrites in anterior and posterior directions
along the midlines. As the IL2Q 3� dendrites travel along the
midline, they extend 4� dendrites perpendicular from the
midline into the body-wall muscle quadrants (Figures 1B and
1F). Each 4� dendrite is spaced and does not overlap with
another, suggestive of self-avoidance. Occasionally, a given
4� dendrite branches again, producing a 5� dendrite that
extends the potential receptive field in the body wall. Gener-
ally, the body-wall 4� dendrites will remain in the ipsilateral
body-wall quadrant. In rare instances, we observed wild-
type (WT) dauers whose dendrites crossed the dorsal or
ventral midlines and extended 4� dendrites to the contralateral
side (Figure S2C).

In addition to dendritic branches emerging from the 1� den-
drites, dauer IL2Qs extend additional 1� dendrites from the
cell bodies, resulting in a shift from bipolar to multipolar neu-
rons. We refer to these additional dendrites as dauer-specific
primary (1d�) dendrites (Figure 1C). The 1d� dendrites extend
toboth thedorsal/ventralmidlinesaswell as the lateralmidlines
and remain within the ipsilateral body quadrant. For example,
the IL2QDL may send 1d� dendrites to both the dorsal and
lateral left midlines. Upon reaching the midlines, the 1d� den-
drites branch to form 2d� dendrites that extend in anterior and
posterior directions. The 2d� dendrites then branch and extend
3d� dendrites perpendicular into the ipsilateral body-wall field,
similar to the 4� dendrites that originate from the 1� dendrites.
The IL2Ls remodel during dauer in a pattern distinct from the

IL2Qs. The dauer IL2Ls extend only a single 2� dendrite, at the
distal end of the 1� dendrite, toward the lateral midline. Upon
reaching the midline, the IL2L 2� dendrite extends 3� dendrites
around the circumference of nose. Frequently (w50% in WT),
the 3� dendrites from each lateral IL2 neuron meet to form a
crown-like structure (Figure 1D). It is uncertain whether the
crown processes fuse as seen with the amphid sheath cells
in dauers [8, 9].
After a return to favorable environmental conditions, dauers

recover and reenter reproductive developmental [2]
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Figure 2. Time-Lapse Imaging of IL2Qs during

Dauer Formation Reveals Rapid Dendrite Arbori-

zation

(A) z projection time-lapse images of a single an-

imal expressing Pklp-6::tdTomato after the onset

of the L2d molt into dauer. Fifteen minutes after

the L2d molt, 2� dendritic sprouts (arrow) and

1d� dendrites (arrowhead) appear on an IL2QDL

neuron. Seventy-five minutes after the onset of

the L2d molt, these sprouts have retracted. The

scale bar represents 10 mm.

(B) Lateral z projection time-lapse images of sin-

gle animal expressing Pklp-6::tdTomato during the

L2d molt into dauer. The formation of putative

growth cones (arrow at 6 hr 19 min) as well as

the retraction of branches (arrowheads at 6 hr

and 6 hr 19 min) of IL2Qs is seen. Inset scale

bars represent 5 mm.

(C) Quantification of relative IL2Q dendritic length

during dauer formation after the onset of the L2d

molt fits an exponential curve [Y = 0.849*e(0.066x),

R2 = 0.7436]. A ratio of total/primary dendritic

length was used to adjust for changes in total

body length. Each animal examined is repre-

sented by multiple time points (n = 9 animals,

5–25 time points per animal).
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(Figure S1). During the 12–15 hr recovery period, the IL2 den-
dritic arbors retract, leaving behind remnant branches.
Remnant branches, typically short 2� or 1d� dendrites that
approach but rarely meet the midline, are seen in 75.6% (n =
41) of postdauer L4 and adult animals (Figure 3A). This result
illustrates the influence of the environment and early develop-
mental events on the adult nervous system.

IL2 dendritic arborization is observed in 100% of wild-type
dauers from starved conditions or induced through exposure
to dauer pheromone. Mutations in daf-2 and daf-7, which
cause constitutive dauer formation under favorable environ-
mental conditions, also result in dauer-specific IL2 arboriza-
tion. Exposure to dauer-inducing conditions in nondauer ani-
mals does not result in IL2 arborization (data not shown). We
do not observe similar arborization during dauer in the
following neurons: touch receptor neurons, PVDs, FLPs,
CEPs, amphid, and phasmid neurons. Together, these data
suggest that the IL2s possess the ability to dynamically
remodel and that arborization is an inherent component of
the many morphological and behavioral adaptations seen dur-
ing dauer.
Development of Dauer-Specific IL2Q

Morphology Is a Rapid and Dynamic
Process

To follow the development of dauer-
specific IL2Q arborization, we per-
formed time-lapse imaging of the
IL2Qs during the molt into dauer (Fig-
ure S1). At the beginning of this molt,
an initial 1d� dendrite forms on the
IL2Q cell bodies (Figure 2A) and retracts
soon after the closure of the stoma. After
the original 1d� extension and retraction
event, short puncta form and retract
along the length of the original 1�

dendrite over the next 3-4 hr (Figure 2B).
Approximately 5–6 hr after molt onset,
coinciding with the shrinking of the
pharynx, several of the 2� dendritic sprouts extend toward
the ventral or dorsal midlines. Approximately 6–8 hr after
molt onset, the developing 2� dendrites rapidly grow in an
exponential fashion, forming growth cones and 3� dendrites
that expand and collapse (Figure 2B, compare 6 hr to 6 hr
19 min). Once the 2� dendrites reach the dorsal and ventral
midline, they branch to form both anteriorly and posteriorly
directed 3� dendrites. Continued observation beyond approx-
imately 8 hr after molt onset was technically impossible due to
radial shrinkage and subsequent movement within old cuti-
cles. In summary, dendritic arborization begins slowly and
rapidly increases, leading to an exponential increase in total
dendritic length (Figure 2C).
We examined the morphology of IL2 neurons after a transfer

of dauers to favorable environmental conditions (plentiful
food, low population density) (Figure 3). While commitment
to dauer recovery is made within the first hour upon return to
favorable conditions [5], no obvious changes in IL2 arbors
are seen in dauers during the first hour after transfer. Within
3 hr in favorable conditions, loss of the 4� body-wall dendrites
first occurs. Almost all 4� body-wall dendrites are retracted by
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Figure 3. After Recovery from the Dauer Stage,

IL2Q Arbors Undergo Incomplete Retraction

(A) Lateral z projection of a postdauer L4 express-

ing Pklp-6::GFP. Nematodes often will retain short

remnant 2� (arrows) dendrites following recovery

from dauer. The scale bar represents 10 mm.

(B) Quantification of relative IL2Q dendrite length

after the return of dauers to favorable conditions

(plentiful food, low population density) fits a

sigmoidal response curve [Y = 1.24 + (2.518 O

[1+10(0.183x – 0.616)]), R2 = 0.803]. A ratio of total/

primary dendritic length was used to adjust for

changes in total body length. Each data point rep-

resents a separate animal (n = 35 animals).
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the onset of pharyngeal pumping (3–4 hr after transfer to food);
however, 2� dendrites and 1d� dendrites are still present. Most
branches are retracted, albeit often incompletely, at the molt
into L4 (12–14 hr after transfer) (Figure 3).

IL2Q and IL2L Dendritic Morphology Are Regulated by

Independent Transcription Factors
To begin to understand themechanisms regulating dauer-spe-
cific IL2 branching, we examined several candidate genes. The
POU homeodomain transcription factor UNC-86 is required for
cell identity of several neurons, including PVD and IL2 [15].
UNC-86 also controls dendritic outgrowth in PVD [16]. As
expected, null alleles of unc-86 result in a complete lack of
IL2 reporter GFP expression, presumably due to cell-fate
defects (data not shown). However, the unc-86(n848) reduc-
tion-of-function mutant [17] possesses IL2 neurons with
normal cell somas, axons, and 1� dendrites. Additionally,
unc-86(n848) mutants show normal expression of several
IL2-specific reporters, suggesting retention of IL2 cell fate.
Sequencing of unc-86(n848) revealed a point mutation at a
splice donor site within the DNA-binding homeodomain (Fig-
ure S3C). Interestingly, unc-86(n848) causes a significant
decrease in the number of 4� body-wall dendrites, resulting
in a total decrease in dendritic length, number of branch
points, and a redistribution of the arbor (Figures 4A, 4B, S3A,
and S3B). These results indicate that unc-86 is required for
IL2Q dendritic arborization.

The helix-loop-helix transcription factor, LIN-32, acts in par-
allel with UNC-86 to determine IL2 cell identity [18]. Indeed, a
hypomorphic lin-32 mutant fails to express Pklp-6:: GFP in the
full complement of six IL2 neurons (x = 1.716 0.97 neurons/an-
imal, n = 34 animals). However, typical dauer arborization is
seen in IL2Q neurons that express Pklp-6::GFP (Figures 4B
and S3D). The LIM homeodomain transcription factor MEC-3
is also required for PVD dendritic branching and acts in
concert with UNC-86 for PVD and touch receptor neuron
development [19, 20]. In mec-3 mutants, IL2 dauer-specific
arborization appears to be normal (data not shown).

The RFX transcription factor DAF-19 is a master regulator of
ciliogenesis, with daf-19(m86) null mutants lacking all cilia [21,
22]. Interestingly, IL2Q branching is normal in daf-19(m86)
mutants, suggesting that external signals sensed by the IL2Q
cilia do not directly initiate IL2Q branching (Figure 4B). In WT
dauers, the IL2Ls extend only a single
2� process that forms a crown-like
structure (Figure 1D). However, daf-
19(m86) dauers often display an addi-
tional 2� processes on one or both
IL2Ls [19/34 daf-19(m86) with extra
IL2L processes, 1/21 WT with extra IL2L processes, p <
0.001, Fisher’s exact test] (Figure 4C). We next examined the
IL2s in daf-19(n4132), an allele that disrupts a DAF-19 isoform
necessary for the function but not development of IL2 cilia [13].
Interestingly, daf-19(n4132) dauers do not display additional
IL2L processes (n = 24 animals). These results indicate that
either DAF-19 is acting outside of the IL2Ls to inhibit additional
processes in dauers or that the presence of IL2 cilia has an
inhibitory action on IL2L process formation. Combined, these
data are consistent with the IL2Qs and IL2Ls being two sepa-
rate neuronal classes.

KPC-1, a Furin Proprotein Convertase Homolog, Is
Necessary for Proper Dendrite Arbor Organization

To identify novel genes involved in dauer-specific branching,
we performed a mutagenesis screen. We examined approxi-
mately 1,500 haploid genomes for mutants with defects in
dauer-specific IL2 remodeling. From this screen, we isolated
an allele of the proprotein convertase (PC)-encoding gene,
kpc-1 (Kex2/proprotein convertase). kpc-1(my24) mutants
have highly disorganized and truncated dauer-specific IL2Q
branching with 100% penetrance (Figure 5A and the Supple-
mental Experimental Procedures). kpc-1(my24) dauers show
resistance to 1% SDS and no obvious defects in dauer forma-
tion or recovery or in IL2 retraction after dauer recovery. Non-
dauer kpc-1 mutants show no obvious defects in dendrite
morphology (Figure S5A).
PCs are highly conserved serine proteases that cleave

numerous proproteins into their active forms [23]. PCs contain
an N-terminal signal peptide and prodomain that is autocata-
lytically cleaved (Figure 5B). The catalytic domain contains
conserved aspartate, histidine, and serine residues that serve
as the catalytic triad necessary for nucleophilic attack of cleav-
age sites [24]. The conserved ‘‘P domain’’ is essential for PC
function and is thought to stabilize the PC [25]. The C terminus
is variable among PCs and may include transmembrane and
cysteine-rich domains [24, 26].
kpc-1(my24) introduces a missense mutation resulting in a

P440L amino acid change at a highly conserved proline four
residues C-terminal to the catalytic serine (Figure 5B). Exami-
nation of the crystal structure of mouse furin [27] shows that
the homologous proline is located within the catalytic pocket
and a change to a leucine residue may obstruct cleavage of
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Figure 4. The Transcription Factors UNC-86 and

DAF-19 Regulate Distinct Components of

Dauer-Specific IL2 Remodeling

(A) z projections of WT (top) and unc-86(n848)

(bottom) dauers expressing PF28A12.3::GFP. Scale

bars represent 10 mm.

(B) unc-86(n848) dauers show significantly

smaller IL2Q arbors than theWT. Dendritic length

wasmeasured as a ratio of total/primary dendritic

length to compensate for differences in body

length between genotypes. Data are mean 6

SEM. Genotypes with different letters above

bars are statistically different (a = 0.01) as deter-

mined by ANOVA followed by Tukey’s post hoc

test for comparison of multiple genotypes.

(C) Dorsal z projection of daf-19(m86) dauer

expressing PF28A12.3::GFP with inset of IL2LL

dendrite showing supernumerary branching

(arrowhead). The scale bar represents 10 mm.

See also Figure S3.
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substrates (Figure S4). kpc-1(my24) fails to complement kpc-
1(gk8), a previously isolated deletion allele that removes
most of the catalytic domain (Figure 5B). Furthermore, kpc-
1(my24) and kpc-1(gk8) display a similar severity of IL2
branching defects, suggesting that kpc-1(my24) is a loss-of-
function allele (Figure S5B). There are four PCs encoded in
the C. elegans genome [28]. However, mutations in the other
three PC genes, bli-4, aex-5, and egl-3, do not produce
obvious defects in IL2 dauer-specific dendritic branching, indi-
cating a unique role for KPC-1 among the PCs in IL2 remodel-
ing during dauer (data not shown).

We next explored the role of KPC-1 in themultidendritic sen-
sory neurons PVD and FLP. We found that, similar to the IL2
dauer arbors, the PVD and FLPmultidendritic arbors are highly
disorganized and truncated in adult kpc-1mutants (Figures 5C
and S5C). Interestingly, previous microarray data identified
kpc-1 as upregulated in the PVDs during arborization [16].
kpc-1 mutants are wild-type for amphid, phasmid, and IL2
dye filling and showed no obvious defects in touch-receptor
neuron morphology (data not shown) or function [29]. These
data suggest that KPC-1 is necessary for proper organization
of multidendritic arbors in C. elegans.
KPC-1 Acts Cell Autonomously to

Regulate Dauer-Specific IL2
Arborization

Using a transcriptional reporter consist-
ing of the 3 kb 50 region upstream of
kpc-1 fused to GFP (Pkpc-1::GFP), we
found that kpc-1 is expressed in
numerous neuronal and epithelial cells
during dauer (Figure 6A). Processes
adjacent to the body wall in dauers
resemble those of IL2Q 4� dendrites
(Figure 6B). To determine whether
kpc-1 is expressed in the IL2s, we coin-
jected the Pkpc-1::GFP reporter with a
Pklp-6::tdTomato reporter that is ex-
pressed exclusively in the IL2s. During
nondauer stages, kpc-1 is not expressed
in the IL2 neurons (data not shown).
In dauers, Pkpc-1::GFP and Pklp-6::
tdTomato are coexpressed, indicating
that kpc-1 is upregulated in the IL2s
during dauer (Figure 6C). Nondauer expression was consis-
tently observed in the ventral nerve cord and pharynx with
strong expression in the g2 pharyngeal gland cells and vpi
pharyngeal intestinal valve cells (Figures S6).
We next asked whether KPC-1 acts cell autonomously in the

IL2s to control dauer-specific branching. We expressed KPC-
1(+) under the control of the IL2-specific klp-6 promoter
(Pklp-6::KPC-1) in a kpc-1(gk8) mutant background. The
Pklp-6::KPC-1 transgene is sufficient to rescue the kpc-1 IL2
branching phenotype, indicating that KPC-1 acts cell autono-
mously to control dauer-specific IL2 arborization (Figure 6D).
To determine the subcellular localization of KPC-1, we

created a translational reporter consisting of the 3 kb 50 region
and the entire kpc-1 genomic sequence fused to dsRed. KPC-
1::dsRed rescues the kpc-1(gk8) branching phenotype, indi-
cating that the transgene is functional in IL2 neurons (Fig-
ure 6D). The KPC-1 subcellular localization differs among
neuronal types. In the majority of neurons, including the IL2s,
KPC-1::dsRed is nonnuclear and excluded from all but the
most proximal segments of the 1� dendrite and axon (Fig-
ure 6E). In ventral cord neurons, KPC-1 localizes to cell bodies
and processes (Figure S6B).
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Figure 5. KPC-1 Is Required for Multidendritic

Neuron Arborization

(A) z projections of wild-type (top) and kpc-

1(my24) (bottom) dauers expressing Pklp-6::GFP.

Disruption of kpc-1 results in disorganized IL2

dendritic arbors in 100% of animals examined (n

> 100). See also Figure S5. The scale bar repre-

sents 10 mm.

(B) Exon/intron diagram of kpc-1. The kpc-

1(my24) allele introduces a c/t missense muta-

tion resulting in a P440L amino acid change at a

highly conserved residue (highlighted yellow in

alignment) four amino acids C-terminal from the

catalytic serine (highlighted red in alignment).

The kpc-1(gk8) deletion allele removes the major-

ity of the catalytic domain.

(C) Lateral z projections of PVD neurons in wild-

type (left) and kpc-1(gk8) (right) adults expressing

PF49H12.4::GFP. Similar to the IL2 neurons, disrup-

tion of kpc-1 leads to disorganized and truncated

arbors in PVDs. See also Figure S5C. The scale bar

represents 10 mm.

See also Figures S4 and S5.
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KPC-1RegulatesMovement in BothDauers andNondauers
The kpc-1(gk8) is described as having a slight uncoordinated
phenotype [28]. We find that adult kpc-1 mutants show fewer
body bends than do WT animals (Figure S6C). Adult motility
is not rescued by the IL2-specific Pklp-6::KPC-1 transgene
(data not shown). As kpc-1 is expressed in the ventral nerve
cord (Figure S6B), which regulates movement, it seems likely
that kpc-1 affects the function of these neurons.

Unlike nondauer larval and adult stages, dauers tend to
remain motionless [2]. Dauers are uniquely capable of per-
forming a behavior termed nictation in which the animal ele-
vates the majority of its body into the air for extended periods
of time [3]. In nature, this behavior is thought to facilitate trans-
port of dauers to new nutrient rich environments by passing
arthropods. The IL2 neurons are required for nictation in da-
uers [4]. We found that kpc-1 and unc-86(n848) dauers are
defective in nictation (Figure 7). As both unc-86 and kpc-1
mutants display motility defects, one possibility is that simply
being uncoordinated (Unc) results in nictation defects.We pre-
viously examined the nictation behavior of several Unc or
neurotransmitter/neuropeptide mutants,
including the proprotein convertase
mutant egl-3 and GABA mutants unc-26
and unc-29, and showed that these
mutants are capable of nictation [4]. To
determine whether kpc-1 acts cell auton-
omously to regulate nictation, we
expressed the IL2-specific Pklp-6::KPC-1
transgene in dauers and observed
rescue of nictation defects. We conclude
that kpc-1 acts cell autonomously in IL2
neurons to regulate dauer-specific nicta-
tion behavior (Figure 7) and dendritic
arborization (Figure 6D).

Discussion

Our finding of rapid and reversible den-
dritic arborization during dauer presents
a new system for studying the molecular
pathways leading from environmental
stress to neuronal remodeling. Neuron morphology is affected
by developmental and environmental conditions, and the den-
dritic processes of neurons appear to be acutely sensitive to
changing environments [30]. For example, after exposure to
stress, the mammalian brain undergoes contrasting patterns
of dendrite resorption in the hippocampus and increased
dendrite arborization in the amygdala [31]. In humans, alter-
ations seen in dendrite morphology after extreme stress may
serve a causative role in anxiety-related pathologies such as
posttraumatic stress disorder [32].
Shared and distinct transcriptional mechanisms regulate

PVD, FLP, and IL2Q arborization. For example, the POU home-
odomain transcription factor UNC-86 regulates arborization in
both PVD neurons [16] and IL2Q dauer neurons (Figures 4A
and 4B), while the LIM homeodomain transcription factor
MEC-3 acts in concert with UNC-86 to regulate PVD dendritic
branching, but not IL2Q arborization. Our study does not
directly separate developmental morphogenesis from stress-
induced plasticity per se. As both unc-86 and kpc-1 are neces-
sary for both PVD and dauer-specific arborization, it is likely
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Figure 6. kpc-1 Is Expressed Broadly but Acts Cell Autonomously to Regulate IL2Q Dauer-Specific Remodeling

(A) Ventral z projection of dauer expressing Pkpc-1::GFP with expression in numerous neuronal and nonneuronal cells throughout the head. The scale bar

represents 10 mm.

(B) Ventral body-wall plane of same animal as in (A) showing GFP expression in IL2Q dauer-specific branches (arrow) as well as several additional neuronal

commissures (arrowhead, amphid commisure). The scale bar represents 10 mm.

(C) Dauer expressing both the IL2-specific reporter Pklp-6::tdTomato (left) and Pkpc-1::GFP (middle). An overlay image (right) demonstrates that Pkpc-1::GFP is

expressed in the IL2s. The scale bar represents 5 mm.

(D) kpc-1(gk8) defects in dauer-specific IL2Q arborization are rescued by constructs of either an IL2-specific promoter driving full-length wild-type kpc-1

(Pklp-6::KPC-1) or full-length kpc-1 taggedwith dsRed and driven by the kpc-1 endogenous promoter (KPC-1::dsRed). Rescuewas assessed by examination

of dauer-specific IL2Q arborization in kpc-1(gk8) dauers expressing Pklp-6::GFP in three independent transgenic lines (n = 22–25 dauers per line). A mean6

SEM of the three lines is given. Statistical tests comparing the rescued lines with the WT and kpc-1(gk8) cannot be performed due to a lack of variation in

controls; however, Pklp-6::KPC-1 and KPC-1::dsRed are not statistically different (Fisher’s exact test, p = 0.9303).

(E) z projection of kpc-1(gk8) dauer head expressing KPC-1::dsRed. In most neurons, KPC-1::dsRed is localized exclusively within the cell bodies and is not

observed in neuronal processes. However, in the ventral nerve cord KPC-1::dsRed is found in both cell bodies and neuronal processes (see Figure S6B). The

scale bar represents 10 mm.

See also Figure S6.
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Figure 7. kpc-1 and unc-86 Regulate Nictation Behavior

(A) Quantification of percent time spent nictating versus nonnictating [(Tnic / T)3 100] in actively moving dauers as previously described [4]. kpc-1 and unc-

86(n848) mutant dauers are defective in nictation ratio, while IL2-specific rescue of kpc-1 restores nictation ratio to WT levels.

(B) Quantification of nictation initiation index [N / (Tnic – T)3 100] as previously described [4]. kpc-1 and unc-86(n848)mutants are defective, while IL2-spe-

cific rescue of kpc-1 restores initiation index to WT levels.

Data are means6 SEM. Genotypes with different letters above bars are statistically different (a = 0.01) as determined by Kruskall-Wallis followed by Dunn’s

multiple comparison. n = 13–50 animals/genotype.

See also Figure S6.
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that these genes are acting on developmental morphogenesis
rather than directly through a stress-induction pathway. One of
the most striking phenotypic differences between the PVD/
FLP and IL2 arbors is the ability of the IL2 arbor to retract
upon a change in environmental conditions. Future examina-
tion of the loss of IL2Q arbors during dauer recovery may pro-
vide molecular insight into mechanisms regulating dendritic
retraction.

IL2 neurons play roles in dauer maintenance and dauer-spe-
cific nictation behavior [4, 33, 34]. unc-86 and kpc-1 mutant
dauers are defective in both IL2Q arborization and nictation.
Furthermore, cell-specific rescue of kpc-1 restored nictation
behavior to wild-type levels. While this evidence is indirect, it
is tempting to hypothesize that IL2Q branches have a function
in nictation. In the adult, the PVD and FLP neurons are polymo-
dal sensory neurons, serving as both nociceptors and propri-
oceptors [14, 35, 36]. The morphological similarity between
dauer IL2 arbors and PVD/FLP adult arbors may indicate a
shared function as polymodal sensory neurons.

We found that kpc-1 is required for the organization of multi-
dendritic arbors in C. elegans. KPC-1 is homologous to furin,
an essential mammalian PC [28, 37]. Furin activates sema-
phorins in vitro and is involved in axon guidance in the devel-
oping chick tectum [38, 39], while Drosophila Fur1/furin
mutants have synaptic target recognition defects [40]. In addi-
tion to our discovery of dendrite arborization, we found gross
anatomical changes to IL2 axon morphology (Figure S2B); it
will therefore be of great interest to examine IL2 synapses
with TEM for likely changes in synaptic connectivity in dauer
animals and the role of kpc-1 in these processes.

The substrate(s) of KPC-1 remain elusive. Furin is known to
cleave numerous substrates [23]. Based on its similarity with
furin, KPC-1 may be necessary for processing TGF-b ligands
[28]. However, single mutants of the four TGF-b ligands with
predicted furin cleavage sites (daf-7, unc-129, dbl-1, and tig-
2) did not phenocopy the kpc-1mutant IL2 arborization defect
(data not shown). The identification of individual substrates
responsible for IL2Q arborization is an important but chal-
lenging goal. An expansion of our genetic screen, combined
with the use of a proteomics approach, may facilitate identifi-
cation of KPC-1 substrates and understanding of PC biology.
Experimental Procedures

All nematodes were grown under standard conditions [1]. The following

transgenic strains were used to image the IL2 neurons and considered

wild-type in an N2 Bristol background: PT2519 myIs13[Pklp-6::GFP + pBX]

III; JK2868 qIs56[Plag-2::GFP] V [33, 41]; PT2038 pha-1; myEx632

[Pklp-6::tdTOMATO + pBX] [42]; PT2506 ofEx731[PF28A12.3::GFP] [43]. Addi-

tional methods are provided in the Supplemental Experimental Procedures.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cub.2013.06.058.
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